博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
GMM
阅读量:6245 次
发布时间:2019-06-22

本文共 1388 字,大约阅读时间需要 4 分钟。

GMM 英文全称:Gaussian Mixture Model  中文:高斯混合模型 。既然叫高斯混合模型,自然是由高斯模型混合而来。高斯模型,就是我们平时的正态分布,又名高斯分布。友情提醒:要学习理解高斯混合模型,需要中心极限定 理和极大似然估计这两个概率论背景知识。高斯混合模型,也主要是用于聚类。举这样一个例子:假设现在有两个不同的高斯分布,我们用这样的两个分布随机的生 成任意多个点,那么如何将某个点判定为属于哪一个分布?这就相当于一个聚类问题,如何将一个点分配到他应该属于的那个类中。

我们知道kmeans也可以用于聚类,那么GMM和kmeans的区别在哪里呢?在kmeans中,我们直接就得到了一个数据点,应该属于哪一个类。而在 GMM中,我们得到的结果只是某个点属于某个类的可能性大小。举个例子,比如存在这样一种情况:两个高斯分布图像存在重叠的部分,那么处于交叉部分的数据 点A,就只能是有一个属于某一个高斯分布的概率。如何决定A是属于哪一个高斯分布,将有你来作决定,而不是由机器决定。假如有这样一个根据症状测试病人患 什么病的机器,如果机器测出来患A病的可能性是0.55,患B病的可能性是0.45.这两个概率就很接近,这时候不能草率的说病人就是患A病,必须由医生 再次诊断。
GMM的学习结果:就是某个数据点属于某个类的概率。
每个GMM看作有K个高斯分布组成,那么这些高斯分布的线性组合就是GMM的概率密度函数:

其中 πk表示第k个高斯分布被选中的概率。显然我们要作的就是确定 pi(k),mu(k),sigma(k) (ps:主机本身没有Latex功能,所以就无法直接打希腊字母,郁闷的很,将就着看吧)这些参数的值.显然利用概率论中的极大似然估计来对参数进行估 计。极大似然估计的条件就是在分布函数已知的情况下,借助总体的一个样本对参数进行估计。我们这里已知概率密度函数了,利用一组样本值,X= (x1,x2,...xn),得到事件X发生的概率为:

取对数后可得

接下来我们只要将这个函数最大化(通常的做法是求导并令导数等于零,然后解方程),亦即找到这样一组参数值,它让似然函数取得最大值,我们就认为这 是最合适的参数,这样就完成了参数估计的过程。由于这里对数里面又有累加的过程,我们无法直接用求导的方式求得 pi(k),mu(k),sigma(k)。我们采取迭代的方式,首先假设pi(k),mu(k),sigma(k)已知,计算数据点i由第k个高斯分布 生成的概率gamma(i,k),然后在利用算出来gamma(i,k), 计算pi(k),mu(k),sigma(k)。循环上述步骤,直至GMM的似然函数的值收敛。

上面部分写的混乱了点,还是上公式吧。上述过程总体而言分成3步:

第一步:估计每个数据点属于每个类k的概率,假设mu,pi,sigma这些都是已知的:

第二步:对于每一个聚类k,我们已知它的分布函数,就利用r(i,k)来计算对应的mu(k),pi(k),sigma(k):

第三步:重复迭代上面两步,将上面计算出的pi,mu,sigma带入GMM的极大似然函数中,当似然函数的两次结果小于起初设定的阈值,即似然函数收敛后,运算结束。

 

转载于:https://www.cnblogs.com/549294286/p/3273289.html

你可能感兴趣的文章
在Oracle RAC环境下创建数据库时提示不能验证ASMSNMP密码问题的解决(ORA-01017)
查看>>
集中管理:领导者,不能不考虑的几件事之—— 多维管理视角,一个都不能少...
查看>>
解决Jquery load()加载GB2312页面时出现乱码的两种方案
查看>>
js数组转json并在后台对其解析具体实现
查看>>
avformat_open_input() always return -13
查看>>
linux 编写防火墙脚本
查看>>
方差分析库 ANOVA C++ (libANOVA)
查看>>
线程,进程和程序的简单比较
查看>>
Resetting warning light on AIX
查看>>
Java 实现文件随机读写-RandomAccessFile
查看>>
hdu2027 统计元音
查看>>
星巴克——最单纯的SNS应用
查看>>
spring配置线程池
查看>>
2016年2月5、6日:调研应用监控系统
查看>>
在eclipse中搭建咖啡兔的Activiti演示工程中的各种坑及其解决方法(kft-activiti-demo-no-maven)...
查看>>
我的友情链接
查看>>
简单易用的headless浏览器
查看>>
weka中使用liblinear
查看>>
获取url后面的参数
查看>>
网络超时检测的三种方法
查看>>